Modulbezeichnung	Wärmerückgewinnung
Modulbezeichnung (eng.)	Heat Recovery
Semester (Häufigkeit)	3 (jedes Wintersemester)
ECTS-Punkte (Dauer)	5 (1 Semester)
Art	Pflichtmodul
Studentische Arbeitsbelastung	60 h Kontaktzeit + 90 h Selbststudium
Voraussetzungen (laut BPO)	Grundlagen der Verfahrenstechnik (N) oder Thermo- und Fluiddynamik (M)
Empf. Voraussetzungen	Grundlagen der Verfahrenstechnik (N) oder Thermo- und Fluiddynamik (M)
Verwendbarkeit	BEEEE, BNPT, BNPTPV
Prüfungsform und -dauer	R+(HA/K1)* + EA (PL + SL)
Lehr- und Lernmethoden	Vorlesung und Praktikum
Modulverantwortliche(r)	G. Illing

Qualifikationsziele

Die Studierenden können am Ende des Semesters ...

- · Wissen aus den Themenbereich der Wärmelehre und Apparate zur Wärmerückgewinnung anwenden um je nach Anwendungsgebiet geeignete Wärmeübertragertypen zu ermitteln
- · Wärme- und Massenbilanzen erstellen und bewerten sowie geeignete Formeln und Berechnungsmethoden anwenden um die Wärmeübertrager auszulegen und energieeffizient zu betreiben

indem sie ...

- · der Aufgabenstellung ensprechend passende Apparate auswählen
- · die der Wärmeübertragung zugrunde liegenden naturwissenschaftlichen und mathematischtechnischen Prinzipien anwenden
- · die passenden Modelle und mathematischen Methoden anwenden und die Ergebnisse beurteilen

um dann damit ...

 Aufgabenstellungen in Bezug auf die Wärmerückgewinnung in unterschiedlichen Bereichen wie z.B. Gewerbe, Produktion und Haustechnik erfolgreich bearbeiten zu können * den Einfluss variierender Betriebsbedingungen hinsichtlich der Effizienz und Wirtschaftlichkeit beurteilen zu können um somit den (kosten-) effizienten Einsatz von Energie zu gewährleisten

Lehrinhalte

Wärmelehre, Wärmebilanzen, Apparate zur Wärmerübertragung für Gase und Flüssigkeiten, Einsatz in der Produktion und Energietechnik, Anforderungen in der Praxis.

Literatur

Vorlesungsmanuskript und ergänzendes Material Fachliteratur VDI-Wärmeatlas, Springer Verlag Berlin, 2019 Wagner, W., Technische Wärmelehre, Vogel Buchverlag, 2015 Cerbe, G., Einführung in die Wärmelehre, Hanser Verlag, 2014

Lehrveranstaltungen		
Dozenten/-innen	Titel der Lehrveranstaltung	sws
G. Illina	Wärmerückgewinnung	4