Modulbezeichnung (Kürzel)	Mathematik 3 (MAT2B)
Modulbezeichnung (eng.)	Mathematics 3
Semester (Häufigkeit)	3 (jedes Wintersemester)
ECTS-Punkte (Dauer)	5 (1 Semester)
Art	Pflichtfach
Studentische Arbeitsbelastung	70 h Kontaktzeit + 80 h Selbststudium
Voraussetzungen (laut BPO)	
Empf. Voraussetzungen	
Verwendbarkeit	BET, BETPV
Prüfungsform und -dauer	Klausur 1,5 h
Lehr- und Lernmethoden	Vorlesung, Übung
Modulverantwortliche(r)	G. Kane

Qualifikationsziele

Die Studierenden sollen Vertrautheit mit grundlegenden Konzepten der Mathematik entwickeln und den zum Teil aus der Schule bekannten Stoff in neuen Zusammenhängen sehen. Sie sollen die Grundbegriffe und -techniken der behandelten Themengebiete sicher beherrschen. Des Weiteren sollen Sie die mathematische Arbeitsweise erlernen, mathematische Intuition entwickeln und deren Umsetzung in präzise Begriffe und Begründungen einüben.

Lehrinhalte

Ausgewählte Themen der linearen Algebra und der Analysis werden behandelt. Stichworte zu den Inhalten sind: Lineare Gleichungssysteme, Vektoren, reelle Matrizen, Determinanten, komplexe Rechnung, Folgen und Reihen.

Literatur

Papula: Mathematik für Ingenieure und Naturwissenschaftler Band 1, Vieweg+Teubner, 2014 Papula: Mathematik für Ingenieure und Naturwissenschaftler Band 2, Vieweg+Teubner, 2015

Lehrveranstaltungen

Dozenten/-innen	Titel der Lehrveranstaltung	sws
G. Kane	Numerische Analyse	1
G. Kane	Übung Numerische Analyse	1
J. Fahlke	Einführung in die Statistik und Stochastik	2