Modulbezeichnung (Kürzel)	Elektrische Maschinen und Antriebe (EMA)
Modulbezeichnung (eng.)	Electrical Machines and Drives
Semester (Häufigkeit)	5 (jedes Wintersemester)
ECTS-Punkte (Dauer)	5 (1 Semester)
Art	Pflichtmodul
Studentische Arbeitsbelastung	15 h Kontaktzeit + 135 h Selbststudium
Voraussetzungen (laut BPO)	Keine
Empf. Voraussetzungen	Grundlagen der Gleichstromtechnik, Grundlagen der Wechselstromtechnik, Feldtheorie
Verwendbarkeit	BORE
Prüfungsart und -dauer	Klausur 2 h oder mündliche Prüfung
Lehr- und Lernmethoden	Multimedial aufbereitetes Online-Studienmodul zum Selbststudium mit zeitlich parallel laufender Online-Betreuung und regelmäßigen virtuellen Lehrveranstaltungen, Laborveranstaltungen (vor Ort)
Modulverantwortliche(r)	M. Masur

Voraussetzungen für die Vergabe von Leistungspunkten

Studienleistung (1 CP): Bestehen einer semesterbegleitenden Einsendeaufgabe, welche während des Semesters zu mindestens 60% richtig bearbeitet sein muss. Erfolgreiche Teilnahme am Praktikum. Bewertet mit 'Bestanden'

Prüfungsleistung (4 CP): Bestehen der Klausur oder mündliche Prüfung.

Qualifikationsziele

Die Studierenden können/sind in der Lage...

- · die Gesetze der Lorentz-Kraft bzw. der Lenzschen Regel auf vereinfachte elektromechanische Problemstellungen anwenden.
- einfache mechanische Systeme analysieren, um sie anpassen bzw. selbst auslegen zu können. Sie können die mechanischen Anforderungen (Drehzahl, Drehmoment) eines elektrischen Antriebs für einfache Anwendungen (Flaschenzug, Getriebeantrieb) bestimmen.
- · den Aufbau- und die physikalischen Funktionsprinzipien der elektrischen Maschinen verstehen.
- elektrische Maschinen aufgrund ihres elektrischen Verhaltens beurteilen. Sie können Typenschildangaben interpretieren und auf Basis entsprechender Messungen selbst überprüfen.
- · das Betriebsverhalten der elektrischen Maschinen und die zugehörigen Kennlinien bzw. Zeigerdiagramme anwenden.
- $\cdot\,$ das zur elektrischen Maschine gehörige Ersatzschaltbild zu Analysezwecken anwenden.
- · die Wirkungsgrade verschiedener Antriebslösungen sowohl für den Motor- als auch den Generatorbetrieb berechnen.
- · Lösungsansätze zur Umrechnung mechanischer und elektrischer Größen von Drehfeldmaschinen entwickeln, um die damit verbundenen Betriebsmittel auslegen zu können.

Lehrinhalte

Grundlagen elektrischer Maschinen Charakterisierung elektrischer Maschinen (Kennwerte, motorischer, generatorischer Betrieb); Energiewandlung bei rotierenden Maschinen (prominentes Beispiel aus dem Bereich der regenerativen Energiewandlung: Windkraft-Generator); Kräfte und Spannungen im Magnetfeld; Mechanik

Transformator Spannungsgleichungen; Leerlauf; Kurzschluss; Belasteter Transformator; Drehstromtransformatoren als wesentliches Betriebsmittel (auch der regenerativen!) Energieübertragung

Allgemeine Drehfeldmaschine Drehstromwicklung und das Drehfeld; Läuferbewegung

Asynchronmaschine Wichtiger Maschinentyp, da als Stellantrieb und Generator in Windkraftanlagen verwendet: Spannungsgleichungen und Ersatzschaltbild einer Asynchronmaschine; Ständerstromortskurve (Heylandkreis); Grafische Konstruktion der Ständerortskurve; Schlupfgerade; Leistung; Optimaler Betriebspunkt; Antriebsmoment; Drehzahlsteuerung

Synchronmaschine Wichtiger Maschinentyp, da er als Generator noch die weiteste Verbreitung findet: Grundlegende Bauformen; Funktion und das elektrische Betriebsverhalten; Betriebsarten; Ständerstromortskurve; Leistung und Antriebsmoment.

Literatur

Fischer, Rolf (2013): Elektrische Maschinen. 16., aktualisierte Aufl. München: Hanser. Michel, Manfred (2011): Leistungselektronik. 5., bearb. und erg. Aufl. Berlin: Springer. Müller, Germar; Ponick, Bernd (2014): Grundlagen elektrischer Maschinen. 10., wesentlich überarbeitete und erweiterte Auflage. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA. Schröder, Dierk (2015): Elektrische Antriebe - Regelung von Antriebssystemen. 4. Auflage. Berlin, Heidelberg: Springer Vieweg. Schröder, Dierk (2013): Elektrische Antriebe - Grundlagen. 5., erw. Aufl. Berlin: Springer Vieweg.

Lehrveranstaltungen	
Dozenten/-innen	Titel der Lehrveranstaltung
M. Masur	Elektrische Maschinen und Antriebe
M. Masur	Praktikum Elektrische Maschinen und Antriebe