

Modulhandbuch Studiengang Bachelor Biotechnologie im Praxisverbund

(PO 2017)

Hochschule Emden/Leer Fachbereich Technik Abteilung Naturwissenschaftliche Technik

(Stand: 27. Juli 2021)

Inhaltsverzeichnis

1	Abkürzungen der Studiengänge des Fachbereichs Technik	3
2	Modulverzeichnis	3
	2.1 Pflichtmodule	4
	Allgemeine Biologie	4
	Thermische Verfahrenstechnik	5
	Verfahrenstechnik Praktikum RT	6

1 Abkürzungen der Studiengänge des Fachbereichs Technik

Abteilung Elektrotechnik und Informatik

BET Bachelor Elektrotechnik

BETPV Bachelor Elektrotechnik im Praxisverbund

BI Bachelor Informatik

BIPV Bachelor Informatik im Praxisverbund

BMT Bachelor Medientechnik

BOMI Bachelor Medieninformatik (Online)

BORE Bachelor Regenerative Energien (Online)

BOWI Bachelor Wirtschaftsinformatik (Online)

MII Master Industrial Informatics

MOMI Master Medieninformatik (Online)

Abteilung Maschinenbau

BIBS Bachelor Industrial and Business Systems

BMD Bachelor Maschinenbau und Design

BMDPV Bachelor Maschinenbau und Design im Praxisverbund

MBIDA Master Business Intelligence and Data Analytics

MMB Master Maschinenbau

MTM Master Technical Management

Abteilung Naturwissenschaftliche Technik

BBTBI Bachelor Biotechnologie/Bioinformatik

BCTUT Bachelor Chemietechnik/Umwelttechnik

BEP Bachelor Engineering Physics

BEPPV Bachelor Engineering Physics im Praxisverbund

BSES Bachelor Sustainable Energy Systems

MALS Master Applied Life SciencesMEP Master Engineering Physics

2 Modulverzeichnis

2.1 Pflichtmodule

Modulbezeichnung	Allgemeine Biologie
Semester (Häufigkeit)	1 (jedes Wintersemester)
ECTS-Punkte (Dauer)	4 (1 Semester)
Art	Pflichtfach
Studentische Arbeitsbelastung	60 h Kontaktzeit + 60 h Selbststudium
Voraussetzungen (laut BPO)	
Empf. Voraussetzungen	
Verwendbarkeit	BBTPV, BBTBI
Prüfungsform und -dauer	Klausur 1,0 h
Lehr- und Lernmethoden	Vorlesung
Modulverantwortlicher	G.Kauer

Qualifikationsziele

Vorausetzungen zur Entwicklung des Lebens und Modellvorstellungen zur Evolution verstehen. Einen taxonomisch fundierten Überblick gewinnen. Einsatz von Mikroorganismen in Biotechnologie, Modellorganismen für Forschung oder Bedeutsamkeit als Krankheitserreger verstehen. Fundierte Kenntnisse über Baupläne, Reproduktionszyklen, Verbreitung, biologische Besonderheiten und grundsätzliches Verständnis für das Gebiet der Histologie gewinnen.

Lehrinhalte

Evolutionsmodelle, Biologische Systematik: 1. Bacteria: Allgemeine Biologie, Zellwand. Antibioti-ka/Resistenz. Flagellenmotor. Photosynthese, Atmungskette. Sporenbildung.Lebensräume, Krankheitserreger. F-Plasmid. Bakterien in der Biotechnologie. 2. Bacteriophagen:Biologischer Begriff "Virus". Infektionszyklen. 3. Archaea: Biologie der Archaea. 4. Eucarya: Allgemeine Biologie von: Amoeba, Euglenozoa, Retortamonada, Axostylata, Alveolata, Apicomplexa, Ciliophora. Vertebrata, Histologie zu Mammalia. Glaucobionta, Chlorobionta (Chlorophyta + Streptophyta, Histologie zu Streptophyta), Rhodobionta, Haptophyta, Chrysophyta.

Literatur

Strasburger: Lehrbuch der Botanik, Spektrum Akademischer Verlag, 2008 Hickman, Roberts, et Al.: Zoologie, Pearson Verlag, 2008 Brock: Mikrobiologie, Pearson Verlag, 2008

Lehrveranstaltungen				
Dozent	Titel der Lehrveranstaltung	sws		
G.Kauer	Allgemeine Biologie	4		

Modulbezeichnung	Thermische Verfahrenstechnik
Semester (Häufigkeit)	4 (jedes Sommersemester)
ECTS-Punkte (Dauer)	7 (1 Semester)
Art	Pflichtfach
Studentische Arbeitsbelastung	90 h Kontaktzeit + 120 h Selbststudium
Voraussetzungen (laut BPO)	Mathematik I + II
Empf. Voraussetzungen	
Verwendbarkeit	BBTPV, BCTUT, BBTBI, BCTPV
Prüfungsform und -dauer	Klausur 2,0 h
Lehr- und Lernmethoden	Vorlesung
Modulverantwortlicher	G. Illing

Qualifikationsziele

Die Studierenden beherrschen die thermischen Grundoperationen (Trenntechnik, Trocknung, Wärmeübertragung). Sie kennen die einzelnen Apparate und können diese thermodynamisch und fluiddynamisch auslegen.

Lehrinhalte

Thermodynamische Grundlagen dienen zur Beschreibung realer Phasengleichgewichte und deren Anwendung zur Auslegung der Rektifikation und Extraktion. Das McCabe-Thiele Verfahren wird zur Auslegung ebenso herangezogen wie exemplarische empirische Modelle zur fluiddynamischen Auslegung von Packungs- und Bodenkolonnen. Es werden die Grundlagen der Wärmeübertragung vermittelt und typische Bauarten von Wärmeübertragern diskutiert und ausgelegt. Trocknungsprozesse werden anhand des Mollier-Diagramms verdeutlicht und Kovektionstrockner anhand von Beispielen rechnerisch ausglegegt.

Literatur

Lunze, J.: Regelungstechnik 1, Springer, 2007

Strohrmann, G.: Automatisierung verfahrenstechnischer Prozesse, Oldenbourg, 2002

Wagner w.: Technische Wärmelehre, Vogel Buchverlag, 2015 Cerbe, G.: Einführung in die Wärmelehre, Hanser Verlag, 2014

Lehrveranstaltungen

-		
Dozent	Titel der Lehrveranstaltung	sws
S. Steinigeweg	Thermische Verfahrenstechnik 1	2
G. Illing	Thermische Verfahrenstechnik 2	2
G. Illing, S. Steinigeweg	Übung thermische Verfahrenstechnik	2

Modulbezeichnung	Verfahrenstechnik Praktikum BT
Semester (Häufigkeit)	5 (jedes Wintersemester)
ECTS-Punkte (Dauer)	4 (1 Semester)
Art	Pflichtfach
Studentische Arbeitsbelastung	60 h Kontaktzeit + 90 h Selbststudium
Voraussetzungen (laut BPO)	Praktika PC, OC und AC, sowie die Klausuren Mathematik I + II
Empf. Voraussetzungen	
Verwendbarkeit	BBTPV, BBTBI
Prüfungsform und -dauer	Experimentelle Arbeit, mündliche Prüfung, Praktikumsbericht
Lehr- und Lernmethoden	Praktikum
Modulverantwortlicher	G. Illing

Qualifikationsziele

Die Lehrinhalte der Fächer der Verfahrenstechnik werden vertieft und erweitert. Praktischer Umgang mit den Apparaten der Verfahrenstechnik

Lehrinhalte

Versuche zur: Rektifikation; Prozesssimulation Rektifikation, Extraktion; Strömungslehre; Adsorption; Wärmeübertragung (Luft-Luft, Wasser-Wasser); Gaswirbelschicht; Filtration.

Literatur

Praktikumsskripte zu jedem Versuch

Lehrveranstaltungen					
Dozent	Titel der Lehrveranstaltung	sws			
G. Illing, R. Habermann	Praktikum Verfahrenstechnik	2			